Abstract
Inspired by an example of Grebogi et al (1984 Physica D 13 261–8), we study a class of model systems which exhibit the full two-step scenario for the nonautonomous Hopf bifurcation, as proposed by Arnold (1998 Random Dynamical Systems (Berlin: Springer)). The specific structure of these models allows a rigorous and thorough analysis of the bifurcation pattern. In particular, we show the existence of an invariant ‘generalised torus’ splitting off a previously stable central manifold after the second bifurcation point.The scenario is described in two different settings. First, we consider deterministically forced models, which can be treated as continuous skew product systems on a compact product space. Secondly, we treat randomly forced systems, which lead to skew products over a measure-preserving base transformation. In the random case, a semiuniform ergodic theorem for random dynamical systems is required, to make up for the lack of compactness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.