Abstract

Interpretation of reflectance spectra indicates that most belt asteroids are composed of materials similar to carbonaceous chondrites. Also, there is considerable evidence to support the origin of many, if not most, lunar and meteoritic chondrules by impact processes. The accretional histories of the carbonaceous asteroids must have influenced greatly their internal structures and textures. A model for this accretional history can be divided conveniently into three temporal stages that produce distinctly different lithologies: (1) low-velocity accretion of fine silicate and carbonaceous grains producing chondrule-free petrologic type 1 lithology; (2) continued accretion of low-velocity fine silicate and carbonaceous grains, but with a few larger, higher-velocity bodies also impacting the surface thereby producing both fluid drop and lithic chondrules (the resultant lithology would be that of petrologic type 2 and 3 carbonaceous chondrites); and (3) dominance of high-velocity low-mass meteoroid impacts, producing a sparse, thin, erosive lunar-like regolith. The lithologic product of stage 3 is not ideally represented among the presently described carbonaceous chondrites, but texturally analogous samples are known from the achondrites. The greater proportion of chondrules in the CV group meteorites, in contrast to the CM2 and CO3 groups, may be due to the origin of the CV chondrites on larger asteroid parent bodies that could withstand more numerous and higher-energy chondrule-producing impacts prior to fragmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call