Abstract

We investigate the spectral energy distribution (SED) of Centaurus A resulting from a steady compact acceleration region, located close to the central black hole, where both leptonic and hadronic relativistic populations arise. We present here results of such a model, where we have considered synchrotron radiation by primary electrons and protons, inverse Compton scattering, and gamma-ray emission originated by the inelastic hadronic interactions between relativistic protons and cold nuclei within the jets. Photo-meson production by relativistic hadrons were also taken into account, as well as the effects of secondary particles injected by all interactions. The internal and external absorption of gamma-rays is shown to be of great relevance to shape the observable SED, which was also recently constrained by the results of Fermi and HESS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.