Abstract

This work analyses the effect of electromagnetic fields on cartilaginous cells in human joints and the nutrients that flow from the synovial fluid to the cartilage. The perturbation approach and the generalised dispersion model is used to solve the governing equation of momentum and mass transfer. The dispersion coefficient increases with dimensionless time. It aids in grasping the level of nutritional transport to the synovial joint. Low-molecular-weight solutes have a lower concentration distribution at the same depth in articular cartilage than high-molecular-weight solutes. Thus, diffusion dominates nutrition transport for low-molecular-weight solutes, whereas a mechanical pumping action dominates nutrition transport for high-molecular-weight solutes. The report says that the cells in the centre of the cartilage surface receive more nutrients during imbibition and exudation than the cells on the periphery, and the earliest indications of cartilage degradation emerge in the uninflected regions. As a result, cartilage nutrition is considered necessary to joint mobility. It also predicts that, as the viscoelastic parameter increases, the concentration in the articular cartilage diminishes, resulting in the cartilage cells receiving less nutrition, which might lead to harmful effects. The dispersion coefficient and mean concentration for distinct factors, such as the Hartmann number, porous parameter, and viscoelastic parameters of gel formation, have been computed and illustrated through graphics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call