Abstract

The Vicia faba chloroplast genome lacks inverted repeat sequences and contains only one set of ribosomal RNA genes. The genetic organization has been altered by inversions, relative to the typical arrangement of most higher plant chloroplast genomes. The Vicia faba plastid genome thus represents one of the more interesting results of chloroplast genomic evolution. The present study employs small DNA probes and Southern blot hybridizations to investigate the steps involved in the evolution of the Vicia faba chloroplast genome. The data from heterologous hybridizations between chloroplast DNA of Brassica napus (a conserved genome) and of Vicia faba led to three observations: 1) The inverted repeat segment closest to the psbA gene was deleted prior to the rearrangements. 2) A quarter of the ancestral small single copy region was lost during the deletion. 3) The genetic organization observed in Vicia faba resulted from three inversions after the deletion event. Our findings, combined with previous observations, helped devise a stepwise model for the evolution of the Vicia faba chloroplast genome. The area of the small single copy region absent from the Vicia faba chloroplast chromosome lacks in vivo transcription activity in Brassica napus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call