Abstract

A kinetic model that describes substrate interactions during reductive dehalogenation reactions is developed. This model describes how the concentrations of primary electron-donor and -acceptor substrates affect the rates of reductive dehalogenation reactions. A basic model, which considers only exogenous electron-donor and -acceptor substrates, illustrates the fundamental interactions that affect reductive dehalogenation reaction kinetics. Because this basic model cannot accurately describe important phenomena, such as reductive dehalogenation that occurs in the absence of exogenous electron donors, it is expanded to include an endogenous electron donor and additional electron acceptor reactions. This general model more accurately reflects the behavior that has been observed for reductive dehalogenation reactions. Under most conditions, primary electron-donor substrates stimulate the reductive dehalogenation rate, while primary electron acceptors reduce the reaction rate. The effects of primary substrates are incorporated into the kinetic parameters for a Monod-like rate expression. The apparent maximum rate of reductive dehalogenation (qm, ap) and the apparent half-saturation concentration (Kap) increase as the electron donor concentration increases. The electron-acceptor concentration does not affect qm, ap, but Kap is directly proportional to its concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call