Abstract

Clusters of self-interstitial atoms are formed in metals by high-energy displacement cascades, often in the form of small dislocation loops with a perfect Burgers vector. In isolation, they are able to undergo fast, thermally activated glide in the direction of their Burgers vector, but do not move in response to a uniform stress field. The present work considers their ability to glide under the influence of the stress of a gliding dislocation. If loops can be dragged by a dislocation, it would have consequences for the effective cross-section for dislocation interaction with other defects near its glide plane. The lattice resistance to loop drag cannot be simulated accurately by the elasticity theory of dislocations, so here it is investigated in iron and copper by atomic-scale computer simulation. It is shown that a row of loops lying within a few nanometres of the dislocation slip plane can be dragged at very high speed. The drag coefficient associated with this process has been determined as a function of metal, temperature and loop size and spacing. A model for loop drag, based on the diffusivity of interstitial loops, is presented. It is tested against data obtained for the effects of drag on the stress to move a dislocation and the conditions under which a dislocation breaks away from a row of loops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.