Abstract

[1] Sediment particles affect the phase behavior of gas hydrates, both by increasing the surface energy where pore geometry forces hydrate crystals to attain high curvatures and through wetting interactions that cause aqueous films to coat particle surfaces. These effects produce only slight changes to the gas solubility through most of the hydrate stability zone, so the particle size has only a modest influence on the rate of hydrate accumulation when the sediments are homogeneous. In hydrate reservoirs, however, discontinuous changes in sediment properties are common and such stratigraphic boundaries often coincide with hydrate anomalies. These anomalies are a natural consequence of variations in subsurface sediment properties. By accounting for sediment-hydrate interactions, I show how compositional diffusion supplies the growth of hydrate spikes in coarse-grained sediments immediately adjacent to hydrate-free regions (HFRs) in more fine-grained sediments where the solubility is slightly elevated. Over timescales comparable with Milankovitch cycles, hydrate spikes are typically less than a meter in width and contain essentially all of the hydrate that would have otherwise occupied the much larger adjacent HFR if sediment heterogeneities were absent. Hydrate can form in the more fine-grained sediments only once the spike achieves a sufficiently high saturation level (often >90% of pore volume) that the solubility is continuous across the stratigraphic boundary. The wetting interactions that stabilize much of the residual liquid when hydrate forms an interconnected skeleton spanning many pore diameters can also partially unload sediment particle contacts, and lead to the growth of segregated hydrate nodules and lenses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.