Abstract

A model for the detection of weak electric and magnetic fields is developed by analogy to a phased array antenna and receiver. Pyramidal cells from the cortex of the brain are shown to have elements which can be modeled as an antenna, a mixer amplifier, and a neural network narrow band filter with summing junctions output which could, in turn, modulate the firing rate of a pacemaker cell or ongoing brain oscillations. The signal-to-noise ratio is shown to increase for signals which are coherent in time and space with the square root of the number of elements involved. Additionally, the signal-to-noise ratio may be enhanced by increasing the power spectral density of the ongoing chaotic oscillation at the applied signal frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.