Abstract

Developing a clinically useful closed-loop drug delivery system can be extremely time consuming and costly. One approach to reducing the time and cost associated with developing closed-loop systems is to reduce the number of animal experiments and perform an extensive set of simulation studies. Through simulations, a closed-loop controller's performance can be evaluated over a complete spectrum of the patient population, including boundary conditions. Simulation studies are repeatable, offering significant advantages in comparing modifications in control algorithms. Finally, simulation studies can be performed in a fraction of the time required for animal studies, at a fraction of the cost. We have developed a simulator, that included a nonlinear pulsatile-flow cardiovascular model, a physiological regulatory mechanism, and the pharmacology of four frequently titrated cardiovascular drugs. This simulator has already been used in the design and evaluation of two closed-loop algorithms-a self-tuning regulator (STR) and a multiple model adaptive controller (MMAC)-for blood pressure control during and after cardiac surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.