Abstract
Based on the biochemical kinetics of DNA replication and mutagenesis, including misincorporation and correction, a model has been developed for studying the relationships among the mutation rate (u), the G+C content of the sequence (f), and the G+C proportion in the nucleotide precursor pool (N). Also a measure for the next-nucleotide effect, called the maximum capacity of the next-nucleotide effect (MC), has been proposed. Under the normal physiological conditions of mammalian germ cells, our results indicate: (1) the equilibrium G+C content in a sequence is approximately equal to the G+C proportion in the nucleotide precursor pool, i.e., f approximately N, which is independent of the next-nucleotide effect; (2) an inverted-V-shaped distribution of mutation rates with respect to G+C contents is predicted, when the next-nucleotide effect is week, i.e., MC approximately 1; (3) the distribution becomes flatter (i.e., inverted-U-shaped) as MC increases, but the peak at 50% GC is still observed when MC < 2; and (4) the peak disappears when MC > 2.8, that is, when the next-nucleotide effect becomes strong. Our results suggest that changes in the relative concentrations of nucleotide precursors can cause variations among genes both in mutation rate and in G+C content and that compositional isochores (DNA segments with a homogeneous G+C content) can arise in a genome due to differences in replication times of DNA segments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.