Abstract
The mechanism by which gene regulatory proteins gain access to their DNA target sequences in chromatin is not known. We recently showed that nucleosomes are intrinsically dynamic, transiently exposing their DNA to allow sequence-specific protein binding even at buried sites. Here we show that this dynamic behaviour provides a mechanism for cooperativity (synergy) in the binding of two or more proteins to sites on a single nucleosome, even if those proteins do not interact directly with each other in any way. As a consequence of this cooperativity, two proteins binding to the same nucleosome facilitate each other's binding and also control the level of occupancy at each other's sites. This model, with no adjustable parameters, accounts quantitatively for recent reports of cooperative (synergistic) binding to nucleosomes in vitro. We assess the potential importance of this new cooperativity for gene regulation in vivoby comparing its magnitude to free energies of cooperative protein – protein direct contacts having known significance for gene regulation. Possible roles for nucleosome dynamics in eukaryotic gene regulation, and key remaining questions, are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.