Abstract

Abstract Part I of this work develops a simple model for the complete radial structure of the low-level tropical cyclone wind field. The model is constructed by mathematically merging existing theoretical solutions for the radial wind structure at the top of the boundary layer in the inner ascending and outer descending regions. The model is then compared with two observational datasets. First, the outer solution is compared with a global database from the QuikSCAT satellite (1999–2009) and found to reproduce the characteristic wind structure of the broad outer region of tropical cyclones at large radii, indicating that the solution successfully captures the physics of this region. Second, the inner solution is compared with the HWind database (2004–12) for the Atlantic and eastern Pacific basins and is shown to be capable of reproducing the inner-core structure while substantially underestimating wind speeds at larger radii. The complete model is then shown to largely, though not entirely, rectify this underestimation. Limitations of the model are discussed, including the need for a formal evaluation of the physics of the inner core as well as a transition-region model at intermediate radii characterized by intermittent convection, such as spiral rainbands. Part II will characterize the model’s modes of wind field variability and their relationship to the variability observed in nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.