Abstract

A model has been constructed to describe the electrical characteristics of the central bulk plasma region in a 13.56-MHz parallel-plate discharge in chlorine at pressures of about 1 torr. This region is modeled as a volume-controlled plasma with the electron balance dominated by single-step electron-impact ionization and attachment and with the electron energy distribution function in equilibrium with the local instantaneous electric field. Relationships between the ionization frequency, the attachment frequency, the electron drift velocity, and the electric field are provided by solutions of the Boltzmann equation for mixtures of Cl2 and Cl which result from Cl2 dissociation. From a measured current waveform and Cl2/Cl density ratio, the model generates the local electric-field waveform, the time-varying electron density, and the power density in the central portion of the bulk plasma. The calculated time-averaged power input per unit discharge length compares well with experimentally determined values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.