Abstract

Each time one blinks, a stable tear film (TF) must reestablish itself on the ocular surface to ensure the function and health of the eye. Although the formation of the TF has been extensively studied both experimentally and theoretically, the influence of the lid dynamics on the TF formation is still not fully understood. Experimental instrumentation does not yet have the capability to estimate the TF thickness in vivo over the entire front of the eye, especially near the lids during a blink, where the eyelashes obstruct the view of the ocular surface. Additionally, a realistic blinking eyeshaped domain presents challenges in approximating themotion of the TF in theoretical studies. In thiswork,we overcome these theoretical challenges by implementing a moving overset grid method to study the influence of the lid motion on the formation of TF.

Highlights

  • Background and purposeEach time one blinks, a stable tear film (TF) must reestablish itself on the ocular surface to ensure the function and health of the eye

  • Experimental instrumentation does not yet have the capability to estimate the TF thickness in vivo over the entire front of the eye, especially near the lids during a blink, where the eyelashes obstruct the view of the ocular surface

  • We validated the performance of the numerical approach on the current problem by analyzing the conservation of the TF volume during the blink with no flux boundary conditions (BCs)

Read more

Summary

Introduction

A stable tear film (TF) must reestablish itself on the ocular surface to ensure the function and health of the eye. The formation of the TF has been extensively studied both experimentally and theoretically, , the influence of the lid dynamics on the TF formation is still not fully understood. Experimental instrumentation does not yet have the capability to estimate the TF thickness in vivo over the entire front of the eye, especially near the lids during a blink, where the eyelashes obstruct the view of the ocular surface. A realistic blinking eyeshaped domain presents challenges in approximating the motion of the TF in theoretical studies.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.