Abstract

This paper aims to establish a theoretical feasibility of metal cold rolling with only surface-film boundary lubrication. To this end, a mathematical model for surface-film lubricated cold rolling is developed. It is formulated to factor in the interdependence of mechanics, heat transfer, and surface-film lubrication with three submodels: the lubrication-friction model, the stress-deformation model, and the thermal model. Governing equations are obtained based on fundamental physics of the rolling process and tribochemistry of the surface-film lubrication. The equations are solved simultaneously with full numerical methods of solutions. Sample results are presented to evaluate the model and to show the theoretical potential of the surface-film lubrication for cold rolling. The model may be used as a theoretical tool to aid the research and development of surface-film lubrication technology for cold rolling. It may be further developed in conjunction with precision experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call