Abstract

We suggest a new mechanism for the superoutbursts in SU UMa binaries, in which the increase in the accretion rate resulting in a superoutburst is associated with the formation of a spiral “precessional” wave in the inner parts of the disk, where gas-dynamical perturbations are negligible. The existence of such waves was suggested by us previously. The results of three-dimensional gas-dynamical simulations have shown that a considerable increase in the accretion rate (by up to an order of magnitude) is associated with the formation of the precessional wave. The features of the precessional spiral wave can explain both the energy release in the superoutburst and all its observational manifestations. One distinguishing feature of superoutbursts in SU UMa-type stars is the formation of a “superhump” in the light curve. Our model reproduces well both the formation of a superhump and its observational features, including its period, which is up to 3–7% longer than the orbital period, and the detectability of the superhump independent of the orbital inclination of the binary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.