Abstract
We construct an individual-based kinematic model of rolling migratory locust swarms. The model incorporates social interactions, gravity, wind, and the effect of the impenetrable boundary formed by the ground. We study the model using numerical simulations and tools from statistical mechanics, namely the notion of H-stability. For a free-space swarm (no wind and gravity), as the number of locusts increases, it approaches a crystalline lattice of fixed density if it is H-stable, and in contrast becomes ever more dense if it is catastrophic. Numerical simulations suggest that whether or not a swarm rolls depends on the statistical mechanical properties of the corresponding free-space swarm. For a swarm that is H-stable in free space, gravity causes the group to land and form a crystalline lattice. Wind, in turn, smears the swarm out along the ground until all individuals are stationary. In contrast, for a swarm that is catastrophic in free space, gravity causes the group to land and form a bubble-like shape. In the presence of wind, the swarm migrates with a rolling motion similar to natural locust swarms. The rolling structure is similar to that observed by biologists, and includes a takeoff zone, a landing zone, and a stationary zone where grounded locusts can rest and feed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.