Abstract
Hand gesture recognition has many applications that require models to work in real time and with high recognition accuracy. The problem of hand gesture recognition involves identifying the time, duration and the class of a given movement of the hand. In this paper, a user-specific hand gesture recognition model is proposed. This model is based on electromyographies (EMGs) measured with the Myo Armband, covariances together with a bag of functions for feature extraction, and a shallow feed-forward neural network for classification. This model recognizes 5 gestures: fist, finger spread, wave in, wave out and double tap. The model is trained per user with 25 repetitions for each gesture to recognize. The model was designed, trained and tested using the data of 120 users. The recognition accuracy of this model is 92.45%, with a standard deviation of 11.00%, and an average time of processing of (40.58 ± 1.62)ms, which is less than the permitted delay 300ms for real-time gesture recognition models. Finally, for reproducing the results, the code and the database used for this paper are publicly available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.