Abstract

A modified Hodgkin & Huxley (1952) model for axons was used to simulate smooth muscle action potentials. The modifications were such as to match our own experimental results and published data on the passive and active behavior of smooth muscle. A brief account of the modifications introduced to the HH model is as follows. The resting ionic conductances were obtained from the data of Casteels (1969). Chloride conductance was replaced by an ad hoc leakage conductance ( g ̄ L ) in order to obtain a resting membrane resistance of about 11 kΩcm 2. The ionic equilibrium potentials were according to Kao & Nishiyama (1969). The rate constants m, n and h have similar form to those in axons, but their different numerical values produce action potentials that match the duration of the smooth muscle action potential (about 16 ms) at half its maximum amplitude. The effective membrane capacitance was taken as 2.5 μF/cm 2. The results obtained by implementing those smooth muscle parameters in the HH formulation include: (a) a membrane potential that matches the main characteristics of experimentally recorded action potentials in uterine smooth muscle and guinea-pig taenia-coli, and (b) a propagated action potential which, on a cable diameter of 5 μm (similar to the diameter of a single smooth muscle cell), has a speed of propagation within the range of the values experimentally recorded in smooth muscle. This observed velocity of propagation is not compatible with a large cable and it is concluded that “functional units” are not required to sustain propagation of action potentials in smooth muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call