Abstract
Mining profit oriented patterns is a novel technique of association rule mining in data mining, which basically focuses on important issues related with business. As it is well known that every business aims to generate the profit and find the ways to improve the same. In earlier days association rule mining was used for market basket analysis and targeted only some of the business and commercial aspects. Afterwards the researchers started to aim the most prominent element of any business i.e. Profit, and determined the innovative way to generate the association rules based on profit. Profit oriented patterns mining approach combines the statistic based pattern mining with value-based decision making to generate those patterns with the maximum profit and some ways to generate recommenders for future strategy. To achieve the desired goal the traditional association rule mining alone is not effectual, so we combine the strength of genetic algorithm with association rule mining to enhance its capability. The study shows that Genetic Algorithm improves the effectiveness and efficiency of association rule mining outcome, since genetic algorithms are competent to handle the problems related with the uncertainty, multi-dimensional, non-differential, non-continuous, and non-parametrical, non-linearity constraint and multi-objective optimization problems. In this paper we apply the concept of profit pattern mining with genetic algorithm to generate profit oriented pattern which help out in future business expansion and fulfill the business objective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Research in Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.