Abstract
The ability to accurately predict droplet entrainment at a quench front is required to effectively calculate the interfacial mass, momentum, and energy transfer, which characterizes nuclear reactor safety, system design, analysis, and performance. The present study proposes a model for droplet entrainment at a quench front, based on the best-understood physics related to the quenching phenomenon that is characteristic to Light Water Reactor (LWR) safety analysis. The model is developed based on a film boundary layer and stability analysis that attempts to match the characteristic time and length scales of the entrainment phenomenon. Data from fundamental tube reflood tests have been reduced and utilized for model development, while more-prototypical independent reflood test data have been used for model evaluation. This model has been implemented into the COBRA-TF (COolant Boiling in Rod Arrays – Two Fluid) transient three-field (continuous liquid, droplet, and vapor) two-phase heat transfer and fluid flow systems analysis computer code. Independent code calculations have been performed to confirm the viability of the model for a range of prototypical LWR reflood calculations.Copyright © 2003 by ASME
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.