Abstract

The objective of the work presented in this paper is the determination of an optimal age-based maintenance strategy for wheel motor armatures of a fleet of Komatsu haul trucks in a mining application in Chile. For such purpose, four years of maintenance data of these components were analyzed to estimate their failure distribution and a model was created to simulate the maintenance process and its restrictions. The model incorporates the impact of successive corrective (on-failure) and preventive maintenance on necessary new component investments. The analysis of the failure data showed a significant difference in failure distribution of new armatures versus armatures that had already undergone one or several preventive maintenance actions. Finally, the model was applied to calculate estimated costs per unit time for different preventive maintenance intervals. From the resulting relationship an optimal preventive maintenance interval was determined and the operational and economical consequences and effects with respect to the actual strategy were quantified. The application of the model resulted in the optimal preventive maintenance interval of 14,500 operational hours. Considering the failure distribution of the armatures, this optimal strategy is very close to a run-to-failure scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.