Abstract
One of the most crucial and lethal characteristics of solid tumors is represented by the increased ability of cancer cells to migrate and invade other organs during the so-called metastatic spread. This is allowed thanks to the production of matrix metalloproteinases (MMPs), enzymes capable of degrading a type of collagen abundant in the basal membrane separating the epithelial tissue from the connective one. In this work, we employ a synergistic experimental and mathematical modelling approach to explore the invasion process of tumor cells. A mathematical model composed of reaction-diffusion equations describing the evolution of the tumor cells density on a gelatin substrate, MMPs enzymes concentration and the degradation of the gelatin is proposed. This is completed with a calibration strategy. We perform a sensitivity analysis and explore a parameter estimation technique both on synthetic and experimental data in order to find the optimal parameters that describe the in vitro experiments. A comparison between numerical and experimental solutions ends the work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.