Abstract

This proposed model is based on geological, geophysical and geochemical data. Previous models suggested for the lower continental crust consisted of basalt, gabbro, or charnockitic rocks; however, experimental and field petrological data indicate that the bulk of crustal rocks are metamorphic. A lower crust of heterogeneous metamorphic rocks also agrees with seismic reflection results which show numerous reflections from “layering”. Geothermal conditions favor a “dry” charnockitic or gabbroic lower crust rather than an amphibolitic lower crust because heat production data imply that wet amphibolitic rocks would have a higher heat production than their dry metamorphic equivalents. Relatively high velocities from field and laboratory measurements in such low-density rocks as granite, syenite, anorthosite and granulitic rocks in general imply that the composition of the lower crust is more felsic than gabbro. Variation in seismic velocity and depths from crustal refraction studies and numerous seismic reflections all indicate a highly heterogeneous lower crust. The lower crust, which has traditionally been described as gabbroic or mafic, may consist of such diverse rocks as granite gneiss, syenite gneiss, anorthosite, pyroxene granulite, and amphibolite, interlayered on a small scale, deformed, and intruded by granite and gabbro. Interlayering of these rocks explains the presence and character of seismic reflections. Abrupt changes in dip, tight folding, disruption of layers, intrusion, and changes in layer thickness explain the characteristic discontinuity of deep reflections. Igneous intrusions may be floored by metamorphic rocks. The lower crust consists of a complex series of igneous and metamorphic rock of approximate intermediate composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.