Abstract

Tip links are thought to gate the mechanically sensitive transduction channels of hair cells, but how they form during development and regeneration remains mysterious. In particular, it is unclear how tip links are strung between stereocilia so that they are oriented parallel to a single axis; why their polarity is uniform despite their constituent molecules’ intrinsic asymmetry; and why only a single tip link is present at each tip-link position. We present here a series of simple rules that reasonably explain why these phenomena occur. In particular, our model relies on each of the two ends of the tip link having distinct Ca2+-dependent stability and being connected to different motor complexes. A simulation employing these rules allowed us to explore the parameter space for the model, demonstrating the importance of the feedback between transduction channels and angled links, links that are 60° off-axis with respect to mature tip links. We tested this key aspect of the model by examining angled links in chick cochlea hair cells. As implied by the assumptions used to generate the model, we found that angled links were stabilized if there was no tip link at the tip of the upper stereocilium, and appeared when transduction channels were blocked. The model thus plausibly explains how tip-link formation and pruning can occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.