Abstract

The coupled extended Reynolds (which includes the effects of Navier-slip and flow rheology), elasticity deformation, and the load equilibrium (under a constant load condition) equations are solved simultaneously for the EHL problems. Results show that as the slip length increases or the flow index decreases, the film thickness decreases, the central pressure increases, the pressure spike decreases, the maximum pressure switches from the pressure spike to the central pressure, and the film shape and pressure profiles moves gradually toward the outlet. A proper combination of flow rheology and slip length could fulfill some preferred EHL conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.