Abstract

Abstract The interaction of the alkali in floodwater and the acids in reservoir crude results in the in-situ formation of surfactants, which are responsible for the lowering of interfacial tension (IFT) in caustic flooding. The extent to which IFT is lowered depends on the specific properties of the crude oil and the injection water. Therefore, it is important to establish the relationship between IFT and the essential chemical properties of the acidic oil and the floodwater. This paper presents such a relationship. In this discussion, the adsorption and the desorption of the active species at the interface are modeled as ionic processes using the Gouy-Chapman theory of the diffuse double layer. The interfacial potentials calculated using this model show a fair agreement with the experimentally measured trend of elcctrophoretic mobility. Also, the model rationalizes the experimentally observed effects of alkali concentration, salinity, and the oleic- to aqueous-phase ratio on IFT. We conclude that the acid number of the crude oil may not correlate directly with interfacial activity. Even in cases of low-acid-number crudes, significant interfacial activity could be obtained because of highly hydrophobic active species in the crude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.