Abstract

Detailed information on the physics and chemistry of a sample can be derived from Raman band parameters. However, the Raman band observed by the detector contains artifacts from the instrument, complicating analysis of these details. To obtain Raman data that can be directly correlated to sample properties and to compare Raman spectra across instrumentation, instrumental effects must be accounted for. This is commonly performed for homogeneously broadened bands by determining the contribution of the slit function to the spectrum. However, there is currently no method for understanding instrumental effects on inhomogeneously broadened bands or a method to account for these effects when examining data and comparing data across instruments, though these analyses are commonplace. This shortfall injects an unknown error into the analyses and comparisons of inhomogeneously broadened Raman bands. This work derives a method of modeling inhomogeneous Raman bands as a continuum of homogeneous Raman bands spanning the width of the stochastic fluctuation energy well that causes inhomogeneous broadening. This model is combined with previous work to examine the effects of the slit function, intrinsic Raman band, stochastic energy well, homogeneously broadened Raman band, and slit width band parameters on the inhomogeneously broadened Raman band parameters. This model, for the first time, provides a quantitative description of the experimental parameters that effect the inhomogeneous Raman bands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.