Abstract
The recent advent of advanced microfabrication capabilities of microfluidic devices has driven attention towards the behavior of particles in inertial flows within microchannels for applications related to the separation and concentration of bio-particles. The phenomena of inertial focusing has been demonstrated to be a robust technique in such applications, where the flow of particles in a curvilinear geometry has proven to be particularly advantageous, not only because the geometry can reduce the foot-print of a lab-on-chip device, but also because the coupling of secondary Dean flows to inertial forces allows for exquisite particle manipulations. However, the ability to design a curvilinear channel for a specific application is often based on empirical results, as theoretical models to date typically do not include the effects of a finite sized particle within the flow. Here we present a complete numerical model that directly simulates a particle within a confide curvilinear flow and using this model we investigate the three dimensional focusing behavior of inertial particles as well as the applicability of the point particle assumptions previous researchers have proposed. Finally, we propose a new model that takes into account the full physics, but relies on a perturbation expansion of the lateral forces, where the perturbation parameter is the curvature ratio of the channel. This simple model can be used to predict the behavior of particles in complex channel geometries where the curvature may not be constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.