Abstract

The strain energy for incompressible anisotropic non-linearly elastic materials is decomposed into an isotropic part representing the mechanical response of an isotropic matrix and an anisotropic part representing the contribution to the mechanical response from the presence of fibres. It is the form of the anisotropic component that is of interest here. We note that the invariants can themselves be divided into two classes: the invariants that are homogeneous functions of degree two and those of degree four in the principal stretches. The approach adopted here is straightforward: assume that there is a linear proportional relationship between terms in the general stress–strain law that are of the same degree in the principal stretches. Setting these constants identically zero recovers many of the simplified strain energies commonly found in the literature. The proportionality constants are interpreted as being a measure of the fibre–matrix interaction and a measure of the interaction between fibres in anisotropic non-linear elasticity. An influential model of fibre dispersion is recovered as a special case. The results are illustrated using the homogeneous deformation of simple shear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.