Abstract
A model for fatigue crack growth, similar to that of Majumdar and Morrow, is proposed where the crack growth rate is determined from the low cycle fatigue and cyclic stress-strain response of the material. The model is for a constant stress range at infinity, but does allow for a variable stress intensity factor due to the changing crack length. The study also includes an analysis of the strain range in the neighborhood of the crack tip. Further it is shown that the model predicts the critical stress intensity factor. A prediction of the crack growth rate is made for 2024-T351 aluminium, copper and CU-6.3 AL alloy and is compared to the experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.