Abstract

Abstract A model for fast electron-driven high-density plasma is proposed to describe the effect of injected fast electrons on the temperature and inner pressure of the plasma in the fast heating process of the double-cone ignition (DCI) scheme. Due to the collision of the two low-density plasmas, the density and volume of the high-density plasma vary. Therefore, the ignition temperature and energy requirement of the high-density plasma vary at different moments, and the required energy for hot electrons to heat the plasma also changes. In practical experiments, the energy input of hot electrons needs to be considered. To reduce the energy input of hot electrons, the optimal moment and the shortest time for injecting hot electrons with minimum energy are analyzed. In this paper, it is proposed to inject hot electrons for a short time to heat the high-density plasma to a relatively high temperature. Then, the alpha particles with the high heating rate and PdV work heat the plasma to the ignition temperature, further reducing the energy required to inject hot electrons. The study of the injection time of fast electrons can reduce the energy requirement of fast electrons for the high-density plasma and increase the probability of successful ignition of the high-density plasma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.