Abstract
A two-dimensional classical trajectory model is used to explain the projectile breakup and above-barrier fusion suppression for the reactions 6Li+209Bi, 6Li+152Sm and 6Li+144Sm. To obtain the initial conditions of the equations of motion, a simplified model of the 6Li nucleus has been developed. Numerical solutions of the equations lead to the classification of orbits into breakup and no-breakup trajectories. The breakup fraction is studied as a function of the impact parameter. Using quantum mechanical arguments, the cut-off impact parameter for fusion is determined by proposing a sharp cut-off model which assumes that there is an angular momentum limit to fusion. We introduce a simple formula for the explanation of fusion suppression, according to which fusion suppression is given by the average of the breakup fractions evaluated at impact parameters ranging from head-on collision up to the cut-off impact parameter. We find that there is excellent agreement between the experimental fusion cross section (σexp) and the calculated fusion cross section (σcal) for the systems studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics G: Nuclear and Particle Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.