Abstract

A model for radial redistribution of oxygen in irradiated UO 2 fuel under conditions of temperature and fission rate gradients has been developed. The oxygen transport in irradiated fuel is considered as a two-scale problem. On the local scale defined by the grain size, irradiated fuel is considered as a multi-phase system including solid solution of fission products in UO 2 matrix, solid precipitates (metal phase, grey phase of complex ternary compounds, the phase of condensed CsI) formed at the gas/solid interface and the gas phase in the intergranular bubbles. Intraganular transport of fission products is described by a set of diffusion equations which are supplemented by the condition of partial thermochemical equilibrium in the subsystem “precipitates & gas phase”. The boundary conditions are formulated basing on thermochemical equilibrium on the interface of subsystems “solid solution” and “precipitates & gas phase”. Calculation of the partial thermochemical equilibrium yields local values of the oxygen chemical potential and the deviation from fuel stoichiometry. On the global scale defined by the fuel pellet size, spatial variations of the oxygen potential caused by the temperature gradients or the presence of sources/sinks at the pellet boundary determine thermal diffusion fluxes resulting in redistribution of oxygen. The whole set of equations describing local equilibration and the transport in the local and global scales is solved in a self-consistent manner. The model results for radial distribution of oxygen potential of UO 2 calculated for typical reactor operating conditions and the fuel burnup up ∼100 MW d/kg HM are in satisfactory agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call