Abstract
A high-level power dissipation model for filter- and transform-type digital signal processing (DSP) algorithms implemented using linearly connected multiply-add-based processing elements is presented. Exploration of alternative algorithms, architectures, and design styles for a given signal processing task in terms of high-level parameters is possible using this model. It is shown that there is often an optimal selection of the number and type of time-shared processing elements for VLSI implementation that minimizes the overall power dissipation. A major application of the proposed model is to make quantitative evaluations for exploration of alternative DSP algorithms and architectures. When combined with previously developed area-time metrics, the proposed power dissipation model permits a more realistic evaluation of new and existing circuit solutions to DSP tasks.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.