Abstract

ER lumenal proteins have a K(H)DEL motif at their C-terminus. This is recognized by the ERD2 receptor (KDEL receptor in animals), which localizes to the Golgi apparatus and serves to capture escaped ER lumenal proteins. ERD2-ligand complexes are then transported back to the ER via COPI coated vesicles. The neutral pH of the ER causes the ligands to dissociate with the receptor being returned to the Golgi. According to this generally accepted scenario, ERD2 cycles between the ER and the Golgi, although it has been found to have a predominant Golgi localization. In this short article, we present a model for the functioning of ERD2 receptors in higher plants that explains why it is difficult to detect fluorescently tagged ERD2 proteins in the ER. The model assumes that the residence time for ERD2 in the ER is very brief and restricted to a specific domain of the ER. This is the small disc of ER immediately subjacent to the first cis-cisterna of the Golgi stack, representing specialized ER export and import sites and therefore constituting part of what is known as the “secretory unit”, a mobile aggregate of ER domain plus Golgi stack. ERD2 molecules in the ER domain of the secretory unit may be small in number, transient and optically difficult to differentiate from the larger population of ERD2 molecules in the overlying Golgi stack in the confocal microscope.

Highlights

  • ERD2 in yeast and plants, or KDELR in mammalian cells, is a multi-spanning transmembrane receptor which is responsible for the retrieval of ER-luminal proteins from the Golgi apparatus (Capitani and Sallese, 2009)

  • KDELR-ligand dissociation occurs after fusion of the COPI vesicles with the ER, and the receptors are presumed to be returned to the Golgi apparatus via COPII vesicles (Gomez-Navarro and Miller, 2016)

  • KDELR cycles between the Golgi apparatus and the ER, and it has been detected in animal cells by immunological methods in the cis-Golgi, in COPI vesicles, in the ERGIC (ER-Golgi-Intermediate compartment) and partially in the ER (Tang et al, 1993; Griffiths et al, 1994; Orci et al, 1997)

Read more

Summary

A Model for ERD2 Function in Higher Plants

According to this generally accepted scenario, ERD2 cycles between the ER and the Golgi, it has been found to have a predominant Golgi localization. In this short article, we present a model for the functioning of ERD2 receptors in higher plants that explains why it is difficult to detect fluorescently tagged ERD2 proteins in the ER.

INTRODUCTION
Findings
DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.