Abstract

A self-similar solution for the 3D axi-symmetric radiative MHD equations is presented, which revisits the formation and acceleration of accretion-powered jets in AGNs and microquasars. The model relies primarily on electromagnetic extraction of rotational energy from the disk plasma and forming a geometrically thin super-Keplerian layer between the disk and the overlying corona. The outflowing plasma in this layer is dissipative, two-temperature, virial-hot, advective and electron-proton dominated. The innermost part of the disk in this model is turbulent-free, sub-Keplerian rotating and advective-dominated. This part ceases to radiate as a standard disk, and most of the accretion energy is converted into magnetic and kinetic energies that go into powering the jet. The corresponding luminosities of these turbulent-truncated disks are discussed. In the case of a spinning black hole accreting at low accretion rates, the Blandford-Znajek process is found to modify the total power of the jet, depending on the accretion rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.