Abstract
A a new model for electrochemical proton-transfer reactions on non-catalytic metals is presented, which is similar to the familiar Grotthus mechanism for proton transport in the bulk. The rate-determining step is assumed to be the transfer of a proton from a hydronium ion in the second water layer to a water molecule in contact with the metal, from where another proton is passed on to the metal surface. Monte Carlo simulations show that a considerable negative surface charge on the metal is required to obtain a configuration in which the proton can be transferred to the metal surface. The transfer rate is governed by the reorientation of the water molecule that accepts the proton from the hydronium ion. The change in free energy required for this step is calculated by means of umbrella sampling techniques. Our results do not conform to the Butler–Volmer law for electrochemical reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.