Abstract

The effect of fluid flow on mixed-volatile reactions in metamorphic rocks is described by an expression derived from the standard equation for coupled chemical-reaction and fluid-flow in porous media. If local mineral-fluid equilibrium is assumed, the expression quantitatively relates the time-integrated flux at any point in a flow-system to the progress of devolatilization reactions and the temperature- and pressure-gradients along the direction of flow. Model calculations indicate that rocks are generally devolatilized by fluids flowing uptemperature and/or down-pressure. Flow down-temperature typically results in hydration and carbonation of rocks. Time-integrated fluid fluxes implied by visible amounts of mineral products of devolatilization reactions are on the order of 5·102–5·104 mol/cm2. The model was applied to regionally metamorphosed impure carbonate rocks from south-central Maine, USA, to obtain estimates of fluid flux, flow-direction, and in-situ metamorphic-rock permeability from petrologic data. Calculated time-integrated fluxes are 104–106 cm3/cm2 at 400°–450° C, 3,500 bars. Fluid flowed from regions of low temperature to regions of high temperature at the peak of the metamorphic event. Using Darcy's Law and estimates for the duration of metamorphism and hydrologic head, calculated fluxes are 0.1–20·10-4 m/year and minimum permeabilities are 10-10–10-6 Darcy. The range of inferred permeability is in good agreement with published laboratory measurements of the permeability of metamorphic rocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call