Abstract
Whenever the firm must borrow funds, it must also decide maturity of the new debt. Yet, the decision models which have dealt with the debt maturity decision have done so almost incidentally, as an extension of the decision to exercise the call provision on outstanding bonds ([6], [10], [23]). There has been little direct examination of the corporate debt maturity decision. In an attempt to fill this gap, this paper is an exploration of the debt maturity decision for a firm which is concerned with minimizing the present value of the expected costs of borrowing. This paper develops a discrete dynamic programming model of the debt maturity decision, in a world where interest rates follow a finite Markov process, and where the yield curve is formed from expectations regarding the future course of interest rates. With this optimization model, the influence on the debt maturity strategy of variables such as flotation costs and liquidity premiums will be explored. There will be no consideration of the risks associated with alternative borrowing strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Financial and Quantitative Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.