Abstract

A model for continuous damage combined with viscoelasticity is proposed. The starting point is the formulation connecting the elastic properties to the tensor of damage variables. A hardening law associated with the damage process is identified from available experimental information and the rate-type constitutive equations are derived. This elastic damage formulation is used to formulate an internal variable approximation to viscoelastic damage in the form of a non-linear Kelvin chain. Elastic and viscoelastic equations are implemented into a finite element procedure. The code is verified by comparison with closed-form solutions in simplified configurations, and validated by fitting results of experimental creep tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.