Abstract

In an earlier paper (Harvey and Aubier, 1973) the large scale radial electron density gradient in the corona and solar wind was shown to cause the phase velocity of plasma waves to decrease as they propagate away from the Sun, thus leading to appreciable Landau damping of the plasma waves. It is proposed here that this same phase velocity decrease creates conditions which facilitate the stabilisation of a beam of exciter electrons of finite duration, provided that three conditions are fulfilled. Two of these conditions concern the velocity-time distribution of the exciter electrons at their point of ejection from the Sun, while the third is simply that, above a certain altitude, the coronal electron density decreases with altitude r faster than r−2. The plasma wave source is then associated with the leading edge of the electron stream. The spatial density of the power converted into plasma waves is calculated as a function of position and time, and is shown to be independent of the nature of the stabilisation mechanism. The maximum of this power density is found to move outwards from the Sun at a uniform speed when a simple electron injection model with a Maxwellian velocity distribution is introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.