Abstract

The nonlinear Schrodinger equation (NSE) based on the Taylor approximation of the material dispersion can become invalid for ultrashort and few-cycle optical pulses. Instead, we use a rational fit to the dispersion function around the zero dispersion frequency where the transition between anomalous and normal dispersion regimes occurs. This approach allows us to derive a simple non-envelope model for pulses propagating in time within a transparency window of a nonlinear dispersive medium with an instantaneous cubic nonlinearity. For this model we investigate integrals of motion and demonstrate that a uniformly moving non-envelope soliton does not exist. The only possible localized solution is the solitary breather with some intrinsic dynamics in the comoving frame. Classical envelope solitons oscillating in the comoving frame appear for a longer pulse for which the model is equivalent to the standard NSE. For an ultrashort pulse the model provides a natural bridge between the known non-envelope equations for the purely normal and anomalous dispersion regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.