Abstract

Liquid water confined within nanometer-sized channels exhibits a strongly reduced local dielectric constant perpendicular to the wall, especially at the interface, and this has been suggested to induce faster electron transfer kinetics at the interface than in the bulk. We study a model electron transfer reaction in aqueous solution confined between graphene sheets with classical molecular dynamics. We show that the solvent reorganization energy is reduced at the interface compared to the bulk, which explains the larger rate constant. However, this facilitated solvent reorganization is due to the partial desolvation by the graphene sheet of the ions involved in the electron transfer and not to a local dielectric constant reduction effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.