Abstract

This paper focuses on a workflow distribution methodology for rationally deploying workflow models onto a distributed workflow system running on cloud computing environments, and we particularly lay a stress upon that those workflow systems operable on cloud computing environments are dubbed collaborative workflow systems, which are not only built upon the collaborative workflow architectures proposed in the paper, but pursuing the so-called collaborative computing paradigm characterized by focusing collaboration over cloud computing environments. The essential idea of the workflow distribution methodology is about how to fragment a workflow model and how to allocate its fragments to each of the architectural components configuring the underlying collaborative workflow architecture and system. As a reasonable solution to realize the essential idea, the paper proposes a model-driven workflow fragmentation framework, which provides a series of fragmentation algorithms that semantically fragmentate a workflow model by considering the semantic factors – performer, role, control-flow, data-flow, etc. – of the ICN-based workflow model as fragmentation criteria. The algorithms are classified into the vertical fragmentation approach, the horizontal fragmentation approach, and the hybrid approach of both. Conclusively, this paper conceives a possible set of collaborative workflow architectures embedding the collaborative computing paradigm, and describes the detailed formalism of the framework and about how the framework works on those collaborative workflow architectures and systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.