Abstract

Guided image denoising recovers clean target images by fusing guidance images and noisy target images. Several deep neural networks have been designed for this task, but they are black-box methods lacking interpretability. To overcome the issue, this paper builds a more interpretable network. To start with, an observation model is proposed to account for modality gap between target and guidance images. Then, this paper formulates a deep prior regularized optimization problem, and solves it by alternating direction method of multipliers (ADMM) algorithm. The update rules are generalized to design the network architecture. Extensive experiments conducted on FAIP and RNS datasets manifest that the novel network outperforms several state-of-the-art and benchmark methods regarding both evaluation metrics and visual inspection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.