Abstract

Climate change will have significant impacts on the rain-fed rice production ecosystem, and particularly on the ecosystem’s hydrology and water resources. Under rain-fed lowland conditions, substantial variations among fields in grain yield are commonly observed, but a method that can account for field-scale yield variability to produce regional-scale yield estimates is lacking, thereby limiting our ability to predict future rice production under changing climate and variable water resources. In this study, we developed a model for estimating regional yields of rain-fed lowland rice in Northeast Thailand, by combining a simple crop model with a crop calendar model. The crop model incorporates the effects of two important resources (water and nitrogen) on crop growth. The biomass accumulation is driven by water use, whereas the nitrogen supply determines canopy development and thereby constrains crop water use. Accounting for the wide range of planting dates and the strong photoperiod-sensitive characteristics of rice varieties through the calendar model is an essential component in determining regional yield estimates. The present model does not account for the effects of mid-season drought or flooding, but was nonetheless able to explain the spatial and temporal yield variations at the province level for the past 25 years. Thus, it can be used as a prototype for simulating regional yields of rain-fed lowland rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call