Abstract

Increasing the performance and flexibility of automated manufacturing systems is a key success factor for today’s production companies. Flexible Manufacturing Systems (FMS) have proven to be particularly suitable in this regard since they support small lot sizes and high numbers of variants at the same time. The most important problems facing FMS are the huge expenditure of time and the high costs for “engineering” its control software. Engineering in this context refers to all aspects from planning the concrete production process, to assigning machines to control programs, to implementing software modules, and to testing the whole configuration. In this paper, we describe a model driven approach to support consistent engineering of FMS control software. It makes use of UML and customized UML metamodels for FMS-specific features, and includes a prototype implementation based on open source. We report on first experiences with a real FMS running cosmos 4, a distributed, agent-oriented FMS control software.KeywordsFunctional ModuleControl LogicFlexible Manufacture SystemActivity DiagramEclipse Modeling FrameworkThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.