Abstract

This article describes a model for bottom backscattering strength applicable over the frequency range 100–1000 Hz. The model includes backscatter due to both a rough water/sediment interface and internal sediment inhomogeneities—i.e., sediment-volume scattering within an upward-refracting sediment. The net result is predictions for bottom backscattering strength that depend on the following: frequency, sound speed of the water near the water/sediment interface, density ratio, sound absorption within the sediment, near-surface sound-speed gradient within the sediment, two interfacial roughness parameters, and a parameter proportional to the scattering cross section of a unit volume of sediment. The sediment sound-speed profile is specified in terms of near-surface values for the sound-speed ratio and gradient. Salient features of the modeled backscatter strength include marked departures from Lambert’s law for sediments with sound speed ratios greater than 1; 1–5-dB oscillations as a function of grazing angle, due to the complex structure of the sound field in the sediment; the dominance of sediment-volume scattering over rough surface scattering for most of the grazing angles, frequencies, and sediment types considered; and, for soft sediments, a decrease by about 8–10 dB in the overall level of backscatter as frequency increases from 100 Hz to almost 1000 Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.